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I. INTRODUCTION 

Travelers and operating personnel i n  future  supersonic a i r c r a f t  will ,  

a t  l e a s t  when t ravel ing polar  routes, be subjected t o  a radiat ion hazard 

from so la r  protons and from the  secondary p a r t i c l e s  produced i n  the atmos- 

phere, i n  the a i r c ra f t ,  and i n  t i s sue  by these protons (1). Estimates of 

the radiat ion dose a t  various depths i n  the atmosphere from primary f l a r e  

protons have been given by Schaefer (2)  and by Foelsche (3 ) .  - 

the dose from primary protons and from the low-energy secondary p a r t i c l e s  

produced i n  the atmosphere by these protons have been given by F l m  and 

Lingenfelter (4)  - . 

- 

Estimates of - 

I n  t h i s  paper dose r e su l t s  based on Monte Carlo t ransport  calcula- 

t ions  a re  presented. The calculat ions include contributions from the  

high-energy as w e l l  a s  the low-energy secondary neutrons and protons. The 

dose from primary and secondary pa r t i c l e s  has been obtained, both i n  rads 

and rems, a t  various depths i n  the atmosphere f o r  a typ ica l  so la r  f l a r e  

proton spectrum incident i so t ropica l ly  on the top o f  the atmopshere. 

Because of the lack o f  data on p a r t i c l e  production a t  high energies, only 

incident protons having energies l e s s  than 450 MeV are considered. 

incident spectrum has been broken i n t o  e ight  energy regions, and calcula-  

t ions  have been performed separately f o r  each of these regions i n  order t o  

determine the importance of the various incident  energies f o r  producing 

secondary par t ic les .  

The 

In  section I1 various d e t a i l s  of the  calculat ions,  such as the 

geometry used and the incident  spectrum considered, a r e  discussed. The 

r e su l t s  a r e  given i n  sect ion 111. 
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11. CALCuLclTIONAL DETAILS 

I -  

The geometry has been simplified t o  the  case of multilayered slabs.  

S ta r t ing  a t  the  top of the atmosphere, we consider a s lab  of a i r  ZA g / c 2  

thick,a a s lab of i ron  Z 

slab of i ron  k- g/c& thick,  and an i n f i n i t e  layer  of air. 

t i s sue  are, of  course, intended t o  simulate the a i r c r a f t  and the passen- 

g/c$ thick, a s lab  of t i s sue  30 cm thick, a Fe 
The i ron  and 

1 C  

gers, re spec t i v e  l y  . 
The time- and energy-integrated proton flare spectnrm, assumed t o  be 

incident i so t rop ica l ly  on the  top of the  atmosphere, was taken t o  be ex- 

ponential  i n  r ig id i ty ;  t h a t  i s ,  the  number of incident protons per  cm2 with 

energy grea te r  than E, Pio(X),  was expressed as 

-P(E) /Po 
Pio(X) = K e  J 

1 1 
e P(E) = - [E(E + 2M)]' , 

where 

E = k ine t i c  energy, 

M = proton r e s t  energy, 

e = electronic  charge, 

P ,K = constants which characterize a pa r t i cu la r  flare. 
0 

In t.he ~ ~ 1 r i i l a . t . i o n  reoorted here, P 

chosen s o  t h a t  there  was one incident p a r t i c l e  per  cm2 with energy grea te r  

w a s  taken t o  be 100 MV and K w a s  
0 

than 30 MeV. With t h i s  normalization, Eq. 2 .1  becomes 

a. The atmospheric density i s  a varying function of depth. It may eas i ly  
be shown from the  transport  equations t h a t  if depth i s  measured i n  
g/c$, the calculations carr ied out here are independent of the densi- 
t y  var ia t ions.  



-6 - 

(2 .3 )  

I n  some of the  work, the number of incident  pa r t i c l e s  between two de f in i t e  

energies i s  of i n t e re s t .  For fu ture  reference, we note t h a t  the number of 

incident  pa r t i c l e s  per  c$ with energy between El and E2 i s  

The calculations were car r ied  out using the nucleon t ransport  code 

wri t ten by Kinney ( 5 ) .  - I n  t h i s  code the  nonelastic cross  sect ion for 

nucleon-nucleus co l l i s ions  and the energy and angular d i s t r ibu t ion  of 

secondary nucleons from such co l l i s ions  when the incident  energy i s  greater  

than 50 MeV are taken from t he  intranuclear  cascade calculat ions of 

Ber t in i  (51). 
50 MeV a re  neglected. 

co l l i s ions  w i t h  hydrogen a t  energies grea te r  than 50 MeV are t r ea t ed  using 

experimental data. 

E las t ic  nucleon-nucleus co l l i s ions  a t  energy grea te r  than 

I n  hydrogenous media, neutron and proton e l a s t i c  

b 

Protons with energy l e s s  than 50 MeV a re  assumed t o  slow down and 

stop without undergoing nuclear co l l i s ion .  

50 MeV are  transported using the  neutron t ranspor t  code wr i t ten  by Irving 

-- e t  al. ( 5 5 ) .  

Neutrons with energy l e s s  than 

E las t i c  neutron co l l i s ions  below 50 MeV a re  treated using 

b e  The data  used a re  the  same as those used i n  the  Ber t in i  calculat ions 
(6). 

L 
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C primarily experimental data and nonelastic neutron co l l i s ions  a re  t reated 

using a s l i g h t l y  modified version of  the  evaporation code wr i t ten  by 

Dresner (%5). - 

In  the calculat ions reported here, only incident  protons i n  the  

energy range 50 t o  450 MeV are considered. 

low-energy (qO-MeV) incident protons a re  stopped i n  the  a i r  l ayer  and 

therefore do not  contribute t o  the  dose i n  the  t i s sue .  The dose 

contribution of the secondary neutrons produced by these low-energy 

incident protons i s  small and may be neglected (12) .  

incident pa r t i c l e s  o f  less than 450 MeV a r i s e s  because of t he  lack of data 

on p a r t i c l e  production from nucleon-nucleus co l l i s ions  a t  the higher 

energies. A discussion of the v a l i d i t y  of neglecting the higher energy 

( A 5 0  MeV) incident  pa r t i c l e s  i s  given i n  the next sect ion of t h i s  paper. 

For the  cases considered, the  

The r e s t r i c t i o n  t o  - 

The dose calculat ions are car r ied  out  i n  the  manner described i n  the 

work of Zerby and Kinney (13). L 

here a r e  the same as those used i n  t h i s  previous work. 

I n  par t icular ,  the qua l i ty  fac tors  used 

C. The master cross-section t q e  compiled by D. C. I rving f o r  use i n  the 
neutron t ransport  code, together with references t o  the  data used, i s  
avai lable  on request from the Radiation Shielding Information Center, 
Oak Ridge National Laboratory. I n  the  case of iron, t h i s  master tape 
contains cross-section values only f o r  energies of l e s s  than 18 MeV. 
I n  the calculat ions reported here, the cross sect ions f o r  i ron  a t  the 
higher energies were taken from reference 10, and the angular dis t r ibu-  
t ions  from neutron-iron e l a s t i c  co l l i s ions  were obtained from op t i ca l  
model calculat ions (11). - 
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111. RESULTS AND CONCLUSIONS 

Calculations have been car r ied  out f o r  ZAvalues of 22, 36, and 58 

g / c 8 , d  and f o r  a Z 

i n  t i s sue  from the primary par t ic les ,  as well as from the  several  v a r i e t i e s  

of secondary par t ic les ,  has been obtained i n  each case. 

were performed by breaking the  incident spectrum i n t o  50-MeV in t e rva l s  

and t r ea t ing  each of  these energy groups separately, so  the  dose as a 

function of depth i n  the t i s sue  from each of these energy groups has been 

obtained. The detai led information i s  too extensive t o  be presented here 

and w i l l  be published elsekhere (14) .  - 
r e su l t s  will be given. 

value of 1 g/cm2.e The dose as a function of depth Fe 

The calculat ions 

In  t h i s  paper only the more general 

I n  Tables I, 11, and 111, t h e  rad and rem dose averaged over 30 cm 

of t i s sue  a t  three atmospheric depths a re  given f o r  various energy ranges 

of the incident protons. 

t o  be the  energy deposited pe r  gram of t i s sue  by incident  protons t h a t  

have not undergone nuclear co l l i s ion ,  and the  secondary p a r t i c l e  dose 

The primary proton ionizat ion dose i s  defined 

i s  defined t o  be the energy deposited per  gram of t i s s u e  by a l l  pa r t i c l e s  

produced by both e l a s t i c  and nonelastic nuclear co l l i s ions .  

dose from each energy group is, of course, t he  sum of the primary proton 

ionizat ion dose and the  secondary p a r t i c l e  dose. The calculat ions were 

car r ied  out  using the  spectrum given by Eq. 2.3, a d  within each energy 

group the normalization given by Eq. 2.4 was used so the values i n  a given 

The t o t a l  

These ZA values correspond approximately t o  a l t i t u d e s  of 85,000, 
75,000, and 65,000 f t ,  respectively.  
I n  one special  case, discussed i n  Appendix A, a ZFe value Of 5 g/Cm2 
was used. 

e. 
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column are additive.f A t  t he  bottom of each column the sum over a l l  

energy groups i s  given. 

The doses s m e d  over a l l  energy groups and multiplied by the  number 

of incident  protons per  CII? may be taken as an estimate of the  doses from 

the incident flare. A rough estimate of the e r r o r  introduced by neglect- 

ing the incident pa r t i c l e s  w i t h  energy greater  than 450 MeV may be ob- 

ta ined by assuming t h a t  a higher energy p a r t i c l e  will contribute approxi- 

mately the same amount as a p a r t i c l e  i n  the  energy i n t e r v a l  400 t o  450 MeV. 

Thus, i f  one takes the  t o t a l  dose contribution i n  rads o r  rems given i n  

the t ab le s  f o r  the  energy in t e rva l  400 t o  450 MeV and mult ipl ies  by the 

fac tor  

e P( 30) /lo0 e-P( 450) /lo0 - 7 

e P(30) /lo0 [ e -P( 400) /lo0 - e  P( 450) /lo01 

one obtains an estimate of the contribution of t he  neglected higher energy 

pa r t i c l e s .  This fac tor  has a value of approximately uni ty  and therefore 

f .  S t r i c t l y  speaking, the values i n  the t ab le s  a re  va l id  only f o r  an 
incident  spectrum with Po equal t o  100 MV. However, i f  one assumes 
t h a t  the shape of the spectrum within a 50-MeV i n t e r v a l  i s  not  crucial ,  
then approximate dosC values f o r  other Po values may be obtained by 
renormalization. To obtain approximate values f o r  an incident spec- 
trum with a charac te r i s t ic  r i g i d i t y  P6, one mul t ip l ies  the values i n  
the  table by 

where Po equals 100 MV and E1 and E2 are the  lower and upper limits, 
respectively, of the energy in t e rva l s  i n  the  tab les .  
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4 

the  dose contribution of the pa r t i c l e s  i n  the  energy i n t e r v a l  400 t o  450 

MeV may be taken as a rough estimate of the dose contribution of the  

incident  pa r t i c l e s  with energy greater  than 450 MeV. 

estimate, the contribution of the higher energy p a r t i c l e s  i s  not  negl igible  

but  i s  probably not as s igni f icant  as the contribution of the  low-energy 

incident par t ic les ,  a t  l e a s t  fo r  the shield thicknesses considered here. 

It i s  t o  be noted t h a t  the contribution of t he  higher energy pa r t i c l e s  

becomes more appreciable as the  shield thickness increases.  

On the  basis of t h i s  

The doses s m e d  over a l l  energy intervals ,  given i n  the  tables  as 

wel l  as la ter  i n  t h i s  paper, may be taken as estimates of t he  dose t h a t  

passengers will receive when a supersonic a i r c r a f t  i s  t ravel ing i n  the 

v i c i n i t y  of the  ea r th ' s  magnetic poles where the ea r th ' s  magnetic f i e l d  

does not prevent the  low-energy protons from enter ing the atmosphere. 

Some information on the  doses a t  other l a t i t udes  may be obtained by 

omitting the appropriate low-energy contributions shown i n  the  tables .  

When th i s  i s  done, however, the high-energy contribution t h a t  has been 

neglected becomes more significant,  and thus only a very l imited amount of 

information can be obtained. 

I n  Fig. 1 the rad doses f o r  ZA = 36 g/c& a re  given as a function 

of depth i n  the t issue,  while i n  Figs. 2, 3, and 4 the  r e m  doses a re  given 

as a function of depth i n  the  t i s s u e  f o r  Z 

respectively.  

number of const i tuent  par ts .  

proton which has undergone ionization stopping b u t  ne i ther  e l a s t i c  nor 

nonelastic nuclear co l l i s ion .  A l l  pa r t i c l e s  produced by e i t h e r  e l a s t i c  

or nonelastic nuclear co l l i s ion  of t he  incident  protons a re  considered 

= 22, 36, and 58 g/c$, 

For comparison purposes, the  dose i s  broken i n t o  a large 

A 

A primary proton i s  defined t o  be an incident  
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t o  be secondary pa r t i c l e s .  The primary prgton, the  secondary proton, and 

the secondary neutron fluxes are defined t o  be those which would e x i s t  a t  

the upper iron-tissue in te r face  if the  t i s sue  and the mater ia l  below the 

t i s sue  were replaced by vacuum. 

the energy deposition per  gram of t i s sue  due t o  the ionizat ion and exci ta-  

t ion  of t i s sue  atoms by primary protons. 

i s  the energy deposited per  gram of t i s sue  by a l l  pa r t i c l e s  produced i n  

the t i s sue  by the nuclear co l l i s ion  of primary protons. The secondary 

proton ionization dose and nuclear dose are defined i n  the same manner 

as the corresponding primary proton quant i t ies .  

dose i s  the  energy deposited per  gram of t i s sue  by a l l  p a r t i c l e s  which 

cross from the  t i s sue  i n t o  the upper layer  of  i ron.  The lower backscattered 

dose i s  the energy deposited per gram of t i s sue  by a l l  p a r t i c l e s  which cross  

from the lower layer  of i ron  i n t o  the t issue.  The t o t a l  dose is, of course, 

obtained by summing a l l  seven histograms i n  each f igure.  

The primary proton ionizat ion dose i s  

The primary proton nuclear dose 

The upper backscattered 

In Fig. 1, where the  rad dose i s  considered, the primary proton ion i -  

zation dose const i tutes  the  major p a r t  of the dose over most of the t i s sue  

depth. 

t i on  and i s  notable because it i s  e s sen t i a l ly  f la t .  

ionizat ion dose i s  not negl igible  i n  the f i r s t  f e w  centimeters of t i s sue  

bu t  rapidly becomes so  as one goes t o  the l a rge r  t i s s u e  depths. 

secondary proton nuclear dose, the upper backscattered dose, and the  lower 

backscattered dose are negligible.  

The secondary neutron dose i s  the next most important contribu- 

The secondary proton 

The 

It i s  in te res t ing  t o  compare Figs. 1 and 3, where the  rad and rem 

doses, respectively, are given f o r  the  same geometry. The primary proton 

ionization dose i s  e s sen t i a l ly  the  same i n  rads and rems while the  neu- 
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, -  

I -  

tron dose i s  appreciably higher i n  r e m s .  A s  a consequence, t he  secondary 

neutrons contr ibute  appreciably t o  the t o t a l  r e m  dose. It should a l s o  be 

noted tha t  the primary proton nuclear dose i s  considerably l a rge r  i n  r e m  

than i n  rads. 

In procewing fr~m prg; 2 tc ~ 5 g .  )!, one zor , s l~c r s  pyogressi>-elJ- 

thicker  a i r  shields  and finds t ha t  t he  secondary neutron contribution 

becomes increasingly more s ignif icant .  I n  Fig. 2 the primary proton 

ionizat ion dose, the primary proton nuclear dose, and the  secondary neu- 

t ron dose a l l  contr ibute  appreciably t o  the t o t a l  dose. 

secondary neutrons contribute a la rge  f rac t ion  of the t o t a l  dose and the 

primary protons contribute only a small mount. I n  a l l  three figures,  

the  secondary proton doses and the  upper and lower backscattered doses 

are s m a l l .  

I n  Fig. 4 the  
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APPENDIX A. 

I n  a l l  of the calculations discussed i n  the body of the paper, t he  

same thicknesses of i ron  were used, and no attempt was made t o  determine 

whether the  i ron layers had an appreciable e f f e c t  on the r e su l t s .  The 

two i ron  slabs are, of course, a very crude approximation t o  an ac tua l  

a i r c r a f t  which will have a very uneven mass d i s t r ibu t ion  and will contain, 

a t  l e a s t  i n  some regions, very large masses of iron. I n  order t o  ge t  a t  

l e a s t  a p a r t i a l  answer t o  the question of whether o r  not  large masses of 

i ron will change the resu l t s ,  one calculat ion has been performed using 

Z = 32 g/C$ and ZFe = 5 g/C$. A 

In  t h i s  calculat ion only pa r t i c l e s  i n  the energy range 350 t o  400 

MeV a re  considered. The portion of the spectrum given i n  Eq. 2.3 between 

350 and 400 MeV was taken t o  be incident  i so t rop ica l ly  on the  top of t he  

atmosphere. For these incident  p a r t i c l e s  t he  r e m  doses, averaged over 

30 cm of t issue,  f o r  the case Z 

case Z A -  
doses i n  the table  have the same def in i t ion  as before. These two cases 

a re  comparable i n  the  sense tha t  they both have the  same t o t a l  amount of 

material  i n  g/c$ above the t i s sue .  

= 32 g/cm2, ZFe = 5 g/c$, and f o r  the  A 
- 36 g/c$, ZFe = 1 g/c$, are shown i n  Table Al. The various 

The r e su l t s  f o r  the two cases are very similar. I n  almost a l l  cases, 

the differences a re  su f f i c i en t ly  small tha t  they may be ascribed t o  

s t a t i s t i c a l  f luctuations.  

may be r e a l  and not s t a t i s t i c a l  bu t  these differences are too s m a l l  t o  be 

of significance i n  the  t o t a l  dose. For t h i s  very spec ia l  case a t  l ea s t ,  

the difference between i ron  and a i r  has a negl ig ib le  e f f ec t  on the  dose. 

The difference i n  the secondary neutron doses 
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Table A l .  Rem Dose Averaged Over 30 cm of Tissue f r o m  Incident 
Protons i n  the Energy Interval  350-400 MeV f o r  

ZA = 32 g / C s  and ZFe = 5 and 1 g/Cm2 

(One proton per c 8  with energy >3O MeV i so t ropica l ly  
incident  on top of the atmosphere.) 

Rem Dose 

Primary Proton Ionizat ion Dose 

Primary Proton Nuclear Dose 

Secondary Proton Ionization Dose 

Secondary Proton Nuclear Dose 

Secondary Neutron Dose 

Upper Backscattered Dose 

Lower Backscattered Dose 

To tal 

1.56 x io-11 

9.34 x 

2.92 x io-12 

7.57 x 10-l~ 

5.59 x 10-l~ 

3.98 x 

7.24 x 10-l~ 

3.43 x 

1.60 x io-11 

9.51 x 

3.08 x 

7.51 10-l~ 

5.02 x 

6.35 x 

2.98 x 10-l~ 

3.47 x 
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APPENDIX B. 

I n  t h i s  appendix the detai led results obtained by breaking the inc i -  

dent f lare spectrum in to  e ight  50-MeV in te rva ls  a r e  given. 

calculations,  the incident  spectrum given i n  Eq. 2.3 was used with 

Po = 100 MV. The normalization within each energy interval ,  therefore,  i s  

t h a t  given i n  Eq. 2.4. 

In  a l l  of the 

The results a re  given i n  Figs. B . l  t o  B.48.  I n  Figs. B . l  t o  B . 8  

the rad doses f o r  the case Z 

Figs. B.9 t o  ~ . 1 6  the r e m  doses f o r  t h i s  case a re  given. 

B .24  the rad doses f o r  the case Z - 36 g/c$, ZFe = 1 g/c$ a re  given, 

while i n  Figs. B.25 t o  B.32 the rem doses, respectively,  are given f o r  the 

case Z = 36 g/c$, %e = 1 g/cm2. 

- 22 g/c$, ZFe = 1 g / c 8  a re  given, while i n  A -  
In  Figs. B .17  t o  

A -  

A 

The various doses have, of course, %.he same def in i t ions  as i n  the body 

of the paper. The legend i s  the same f o r  a l l  graphis and i s  as follows: 

= Primary proton ionizat ion dose, 

X = Primary proton nuclear dose; 

= Secondary neutron dose; 

= Secondary proton ionizat ion dose; 

= Secondary proton nuclear dose; 

X = Upper backscattered dose; 

Z = Lower backscattered dose. 
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t i o n  of Depth i n  Tissue fo r  ZA = 22 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. B13. Rem Dose Due t o  250- t o  300-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 22 g/Cm2 and ZFe = 1 g,/cm2. 
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t i o n  of Depth i n  Tissue f o r  ZA = 22 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. B l 5 .  Rem Dose Due t o  350- t o  400-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 22 g/crr? and Z F ~  = 1 g/cm2. 



-40- . 

ORNL-DWG 66-44043 
10-101 

1 0-l1 

5 

2 

1 0-l2 

z z 
7? 

%? 

e 

c 

z 

* 

R 

s 
I I 

5.0 10 15 20 2s 
DEPTH I N  TISSUE, CM. 

1 0-lS 
0 '0 

Fig. B16. Rem Dose Due t o  400- t o  450-MeV Inc ident  Protons as a Func- 
t i o n  of Depth i n  Tissue for  ZA = 22 g/c$ and ZFe = 1 g/cm2. 
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tion of Depth i n  Tissue fo r  ZA = 36 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. s18. Rad Dose Due t o  100- t o  150-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue fo r  ZA = 36 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. B l g .  Rad Dose Due t o  150- t o  200-MeV Incident  Protons as a Func- 
t i o n  of Depth i n  Tissue fo r  ZA = 36 g / c 2  and Z F ~  = 1 g/cn?. 
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Fig. B20. Rad Dose Due t o  200- t o  250-MeV Inc iden t  Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 36 g/cm’ and Z F ~  = 1 g/cm2. 
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Fig. B21. Rad Dose Due t o  250- t o  300-MeV Incident Protons as a Func- 
1 2  t i o n  of  Depth i n  Tissue f o r  ZA = 36 g/cm2 and Z F ~  = 1 g, cm . 
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Fig.B22. Rad Dose Due t o  300- t o  350-MeV Incident  Protons as a Func- 
t i on  of Depth i n  Tissue f o r  ZA = 36 g/cm2 and ZFe = 1 g/cm2. 
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Fig. B23. Rad Dose Due t o  350- t o  400-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 36 g/m2 and Z F ~  = 1 g,  / 2  cm . 
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Fig. B24. Rad Dose Due t o  400- t o  450-MeV Inc ident  Protons as a Func- 
tion of  Depth i n  Tissue f o r  Z = 36 g/cm2 and %e = 1 g/cm 
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Fig. B25. Rem Dose Due t o  50- t o  100-MeV Incident  Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 36 g/cm2 and ZFe = 1 g/cm2. 
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Fig. B26. Rem Dose Due t o  100- t o  150-MeV Incident Protons as a Fmc- 
t i o n  of Depth i n  Tissue f o r  ZA = 36 g/c$ and Z F ~  = 1 g/cm2. 
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Fig. B27. Rem Dose Due t o  150- t o  200-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 36 g/c.i' and Z F ~  = 1 g / c 8 .  
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Fig. B28. Rem Dose Due t o  200- t o  250-MeV Inc ident  Protons as a FUX- 
t i o n  of Depth i n  Tissue for ZA = 36 g/c$ and ZFe = 1 g/c$. 
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Fig. B29. Rem Dose Due t o  250- t o  300-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 36 g/cm2 and ZFe = 1 g/c&. 
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Fig. B3l. Rem Dose Due to  350- t o  400-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 36 g/c$ and Z F ~  = 1 g/cm2. 
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Fig. B32. Rem Dose Due t o  400- t o  450-MeV Incident  Protons as a Func- 
t i o n  of Depth i n  Tissue for ZA = 36 g/cm' and Z F ~  = 1 g/cm?. 
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Fig. B33. Rad Dose Due t o  50- t o  100-MeV Inc ident  Protons as a Func- 
tion of Depth i n  Tissue f o r  Z, = 58 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. B34. Rad Dose Due t o  100- t o  150-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. B35. Rad Dose Due t o  150- t o  200-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/c$ and Z F ~  = 1 g/cr8. 
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Fig. ~ 3 6 .  Rad Dose Due t o  200- t o  250-MeV Incident  Protons as a FunC- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/c$ and ZFe = 1 g/cm2. 
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Fig. ~38. Rad Dose Due t o  300- t o  35O-MeV Inc ident  Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/c& and ZFe = 1 g/cm2. 
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Fig. B39. Rad Dose Due t o  350- t o  400-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/c$ and Z F ~  = 1 g/c&. 
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Fig. B40. Rad Dose Due t o  400- t o  450-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue for ZA = 58 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. B41. Rem Dose Due t o  50- t o  100-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/c& and ZFe = 1 g/cm2. 
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Fig. B42. Rem Dose Due t o  100- t o  150-MeV Incident Protons as a FunC- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/c$ and Z F e  = 1 g/cm2. 
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Fig. B43. Rem Dose Due t o  150- t o  200-MeV Inc ident  Protons as a Fmc-  
t i o n  of Depth i n  Tissue f o r  ZA = 58 g/cm2 and Z F ~  = 1 g/cm2. 
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Fig. B44. Rem Dose Due t o  200- t o  250-MeV Incident  Protons as a Func- 
t i o n  of Depth i n  Tissue f o r  ZA = 58 g / c 2  and Z F ~  = 1 g/cm2. 
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Fig.B45. Rem Dose Due t o  250- t o  300-MeV Incident Protons as a Func- 
t i o n  of Depth i n  Tissue for ZA = 58 g/c* and ZFe = 1 g/cm2. 
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Fig. ~46. Rem Dose Due t o  300- t o  350-MeV Incident  Protons as a Func- 
t i o n  of Depth i n  Tissue for ZA = 58 g / c 2  and ZFe = 1 g/c&. 
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